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The structure of the DNA-binding NAC domain of Arabidopsis
ANAC (abscisic-acid-responsive NAC) has been determined by X-
ray crystallography to 1.9 Å resolution (Protein Data Bank codes
1UT4 and 1UT7). This is the first structure determined for a
member of the NAC family of plant-specific transcriptional
regulators. NAC proteins are characterized by their conserved
N-terminal NAC domains that can bind both DNA and other
proteins. NAC proteins are involved in developmental processes,
including formation of the shoot apical meristem, floral organs
and lateral shoots, as well as in plant hormonal control and
defence. The NAC domain does not possess a classical helix–turn–
helix motif; instead it reveals a new transcription factor fold
consisting of a twisted b-sheet surrounded by a few helical
elements. The functional dimer formed by the NAC domain was
identified in the structure, which will serve as a structural
template for understanding NAC protein function at the
molecular level.
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INTRODUCTION
The NAC protein family comprises a variety of plant proteins that
are identifiable by the presence of a highly conserved N-terminal
NAC domain, accompanied by diverse C-terminal domains. NAC
is an acronym derived from the names of the three genes first
described as containing the domain, namely NAM (no apical

meristem), ATAF1,2 and CUC2 (cup-shaped cotyledon) (Souer
et al, 1996; Aida et al, 1997). NAC proteins appear to be
widespread in plants. For example, the genome of Arabidopsis
thaliana is estimated to contain at least a hundred NAC-encoding
genes, whereas no examples have been found thus far in other
eukaryotes (The Arabidopsis Genome Initiative, 2000; Riechmann
et al, 2000). NAC proteins have been implicated in transcriptional
control in a variety of plant processes. Functions include
involvement in the development of the shoot apical meristem
and floral organs, and in the formation of lateral roots (Souer et al,
1996; Aida et al, 1997; Xie et al, 2000). Furthermore, NAC
proteins have been implicated in responses to stress and viral
infections (Xie et al, 1999; Ren et al, 2000; Collinge & Boller,
2001).

Several NAC proteins have been shown to function as
transcription activators (Ren et al, 2000; Xie et al, 2000; Duval
et al, 2002). The DNA-binding ability of two of these proteins,
NAC1 and AtNAM, has been localized to the NAC domain,
whereas the C-terminal regions constitute transcriptional activa-
tion domains (Xie et al, 2000; Duval et al, 2002). Several NAC
genes are hormone inducible (Hoth et al, 2002; Xie et al, 2002;
Greve et al, 2003). NAC domains have also been implicated in
interactions with other proteins such as viral proteins (Xie et al,
1999; Ren et al, 2000) and RING finger proteins (Xie et al, 2002;
Greve et al, 2003). For example, interactions between the auxin-
inducible NAC1 protein, involved in lateral root formation, and
the RING domain protein SINAT5 attenuate the auxin signal
through ubiquitination and degradation of NAC1 (Xie et al, 2002).
Recently, a NAC protein from Arabidopsis (ANAC) was identified
as an interaction partner of another RING protein (Greve et al,
2003). An examination of interactions between different
RING domains and ANAC suggested that RING and NAC
interactions may also regulate pathways controlled by the plant
stress hormone abscisic acid. The nuclear localization of ANAC
and its primary structure characteristics are consistent with a role
as a transcription factor.

NAC proteins are thus emerging as important proteins in plant
development and biology. Here, the first X-ray crystal structure of
a NAC domain, the NAC domain of ANAC, is presented. The
structure is used to evaluate previous suggestions on function and
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interactions, including DNA binding by NAC proteins. The
structure provides the framework for understanding the functions
of NAC proteins at the molecular level.

RESULTS AND DISCUSSION
Overall structure of the ANAC NAC domain
The overall structure of the NAC domain monomer consists of a
very twisted antiparallel b-sheet, which packs against an N-
terminal a-helix on one side (a1) and one shorter helix a2 on the
other side (Fig 1). The remaining part of the structure comprises
loops between the main secondary structure elements, with only
sporadic and very short stretches of secondary structure, for
example a short b-strand (b00), which packs in a parallel fashion to
the first b-strand in the antiparallel b-sheet, and a helical turn (a000)
preceding a2. The extreme N-terminal portion, which contains
three extra amino acids encoded by the expression vector, is in an
extended conformation. Much of this N-terminal tail is poorly
defined in the crystal structure, except where it is involved in
crystal contacts. The content of observed secondary structure
elements is in good agreement (Fig 2) with previous predictions
based on sequence and with circular dichroism spectra (Greve
et al, 2003).

Searches using DALI (Holm & Sander, 1993) and TOPS-based
topology searches (http://www.tops.leeds.ac.uk; Gilbert et al,
2001) failed to identify close structural homologues. For all the
hits found by DALI, structural similarities were limited to the
central b-sheet, and the Z-score for the best hit was rather low
(3.6). None of the TOPS-based topology search hits had a very
significant score, and none of the most significant hits was a
transcription factor. The architecture of the NAC domain can
thus be considered a novel fold for a DNA-binding transcription
factor domain.

NAC dimer
Dimerization of DNA-binding domains is common and can
function in modulating the DNA-binding specificity (Müller,
2001). Gel filtration studies on the ANAC NAC domain have
shown that it forms mostly dimers in solution (Olsen et al, 2004).
The diffraction data showed evidence of almost perfect non-
crystallographic two-fold symmetry axes parallel to b and c in the
crystal, which could both in principle relate the monomers in the
biological dimer (Olsen et al, 2004). The extensive contacts
involving conserved residues in the dimer formed by the NCS axis
parallel to b strongly suggest that this is the functional dimer
(Fig 3A). The interactions between the monomers are summarized
in Table 1, and the residues involved are marked in Fig 2. Among
the interactions are two prominent salt bridges formed by the
conserved Arg 19 and Glu 26 (Fig 3A). A short antiparallel b-sheet
is also formed at the dimer interface, with hydrogen bonds
between Arg 19(N–H)yArg 19(C O) and Tyr 21(N–H)yGly
17(C O). Many hydrophobic interactions occur at the mono-
mer–monomer interface, most of which involve residues in a
conserved N-terminal block (Fig 2).

There is overall similarity between the two monomers in the
dimer (r.m.s.d. 1.27 and 1.25 Å for 137 and 132 Ca atoms in the
dicyanoaurate derivative and the native structure, respectively).
However, in the highest resolution dicyanoaurate derivative
structure, the heavy atom compound binds asymmetrically to
the dimer. Three minor heavy atom sites are located near Cys 33

(two in monomer A, one in B), whereas the main dicyanoaurate
site is found near residues Phe 41–Ile 46 in monomer A only. The
corresponding region in monomer B forms a short helix (a00),
which is absent in monomer A. The structural asymmetry in this
region is preserved in the native structure. The two monomers also
differ in the N-terminal tail region, which interacts with the region
near helix a00 within each monomer and might affect its
conformation. As packing effects cannot be excluded, it is difficult
at this stage to ascertain whether the asymmetry has biological
relevance or not.

Fig 1 | ANAC NAC domain fold. (A) Stereo diagram showing the Ca trace of

monomer B in the dicyanoaurate derivative. The secondary structure

elements are colour coded as in (B) for clarity, and disordered regions are

drawn in dashed lines. The figure was produced with MOLSCRIPT (Kraulis,

1991) and Raster3D (Merrit & Bacon, 1997). (B) Topology diagram of the

ANAC NAC domain based on that produced by the TOPS server (Gilbert

et al, 2001). The main antiparallel b-sheet and two helices packing against it

are shown in dark blue and red, respectively, whereas extra secondary

structure elements are in light blue (strands) and orange (helices). Small

interruptions and irregularities are present in some of the secondary

structure elements, so that helix a1 is split, for example, into a1a and a1b.

The helices drawn without a border (a0 and a00) are only present in

monomer B in the dimer, whereas dashed lines represent the loops that

could not be traced in the structure.
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DNA binding
NAC domains from the Arabidopsis proteins NAC1 and AtNAM
have been shown to bind specifically to a fragment of the CaMV
35S promoter (Xie et al, 2000; Duval et al, 2002). The ability of the
ANAC NAC domain to bind DNA was examined using in vitro gel
mobility shift assays. As NAC proteins do not bind DNA randomly
(Duval et al, 2002), and no biological target gene has been
identified for NAC proteins, the �90 to þ 9 CaMV promoter

fragment was used for the assays (Fig 4). The gel mobility of the
labelled �90 to þ 9 CaMV fragment decreased by the addition of
purified NAC domain, showing that the NAC domain of ANAC is
also able to bind DNA. The promoter fragment contains several
palindromic motifs, which could potentially be the binding site for
a NAC domain dimer.

However, no well-known DNA-binding motif (Müller, 2001)
could be identified in the domain. Duval et al (2002) analysed
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Fig 2 | Sequence alignment of ANAC and nine other NAC proteins from Arabidopsis. Red residues are common to at least half of the sequences, whereas

blue residues are chemically similar in more than half of the sequences or similar to the dominating residue. Predicted (Greve et al, 2003) and observed

secondary structure of the ANAC NAC domain is indicated above the alignment. H and E denote helices and strands, respectively. Secondary structural

elements enclosed in parentheses are only present in monomer B. Asterisks mark residues located at the dimer interface. In the a00 region, which is different

in the two monomers, residues involved in dimerization are marked with A or B. The region predicted to function as a nuclear localization signal in NAC1

and ANAC is marked by N. Triangles mark basic residues that are conserved in more than half of the sequences in the Arabidopsis NAC protein family.

ANAC: At1g52890; NAP: At1g69490; AtNAM: At1g52880; ATAF1: At1g01720; ATAF2: At5g08790; CUC2: At5g53950; CUC1: At3g15170; CUC3: At1g76420;

NAC1: At1g56010; TIP: At5g24590. Multiple sequence alignment was performed with ClustalW (Thompson et al, 1994), and BOXSHADE was used to

produce the graphical presentation of the alignment.
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AtNAM deletion mutants in yeast for their ability to bind the
CaMV promoter fragment, and reported that the region corre-
sponding to ANAC residues Val 111–Lys 168 constitutes the DNA-
binding domain of the AtNAM protein. On the basis of secondary
structure predictions, they hypothesized that the region would fold
into a helix–turn–helix structure. The region from Val 111 to
Gln 163 (five residues could not be traced at the C-terminus) is
shown in yellow in Fig 3A. It consists of b-strands 4, 5 and 6 and
the connecting turns, evidently not a helix–turn–helix structure.
The only NAC domain region that might be reminiscent of the
motif is helices a1a/b and a00 in monomer B. However, the a1–a00

region of the ANAC sequence has four acidic residues and only
two basic residues, and is thus not likely to form a DNA-binding

motif. Furthermore, the sequence forming a00 is not well conserved
in NAC proteins. Surface representations showing the charge
distribution on the NAC dimer are presented in Fig 3B–D. It is
apparent that one face is rich in positive charges, whereas the
other is not. The extremities of b-strands 4 and 5 and the
connecting turn protrude from the face of the NAC dimer that is
rich in positively charged residues. As this area of the structure is
part of the region designated as DNA binding by Duval et al
(2002), it is tempting to speculate that it is involved in the
interaction with DNA. From alignments of NAC primary
sequences, it is apparent that the area between Arg 76 and
Arg 138 (ANAC numbering) is particularly rich in conserved, basic
residues (see labelling in Fig 2). This corresponds to b1, b2, b3a/b,

Fig 3 | Functional NAC dimer in the 1.9 Å dicyanoaurate derivative structure. (A) Cartoon representation of the dimer (excluding the first 11 residues in

monomer A and nine in monomer B in the disordered N-terminal tail region). The salt bridges between the conserved residues are shown. The two

monomers are shown in blue and red, whereas the region responsible for DNA binding according to Duval et al (2002) is shown in yellow. The main

dicyanoaurate site is displayed as a sphere. The figure was produced with MOLSCRIPT (Kraulis, 1991) and Raster3D (Merrit & Bacon, 1997). (B–D) Surface

representations of the NAC dimer in different views (B) is in the same orientation as (A), while (C) and (D) correspond to clockwise rotations of 901 (C) and

1801 (D) around a central vertical axis lying in the plane of the paper. Positive (blue) and negative (red) charges are mapped onto the surface. The charged

residues in regions missing in the model (loops between b1 and b2 and b5 and b6, and the C-terminus) are represented schematically. The figure was

produced with GRASP (Nicholls et al, 1991).
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b4a/b and b5a/b in the NAC domain structure, and thus
encompasses the protruding b-‘arm’ and a major part of the
twisted b-sheet. A number of proteins use b-sheet structures for
DNA binding (Luscombe et al, 2000). There are several examples
of two-stranded b-sheets that bind in either the major or the minor
groove (Tateno et al, 1997). Other modes of DNA recognition by
b-sheets include the three-stranded b-sheet of the GCC-box
binding domain (Allen et al, 1998) and the five-stranded b-sheet
of the GCM domain, in which the edge of the b-sheet protrudes
into the major groove (Cohen et al, 2003). Considering the extent
of the NAC domain area that is rich in conserved, basic residues, a
number of modes of DNA interaction can be envisioned. It will be
interesting to determine whether the NAC domain adds to the
diversity of ways in which b-sheets mediate DNA binding.

Nuclear localization signals
The control of nuclear localization is pertinent to the proper
function of many transcription factors. Two NAC proteins, NAC1
and ANAC, have been shown to locate to the nucleus (Xie et al,
2000; Greve et al, 2003), but no nuclear localization signal (NLS)
has been experimentally identified.

On the basis of sequence analysis, NAC1 has been predicted to
contain a basic bipartite NLS, and the corresponding region in the
ANAC sequence has been suggested to constitute a degenerate
bipartite NLS (Xie et al, 2000; Greve et al, 2003). The first two
residues of the predicted NLS region (marked in Fig 2), Lys 114
and Lys 115, are located on b-strand 4 and are thus partly buried
in the structure. The basic residues constituting the C-terminal part
of the predicted NLS are, conversely, exposed at the surface. The
role of the predicted NLS region in nuclear import of NAC proteins
needs further investigation by mutagenesis and localization
studies. The structure presented here can aid the design and
interpretation of such studies.

CONCLUSIONS
In recent years, the importance of NAC proteins in plant
development, transcription regulation and regulatory pathways
involving protein–protein interactions has been increasingly
recognized. The structure determination of the N-terminal domain
of ANAC provides the first structural template for a NAC domain.
We show that the NAC domain adopts a novel fold for a
transcription factor, consisting of a twisted antiparallel b-sheet
sandwiched between two helices. The structure suggests that this
domain mediates dimerization of the NAC proteins through
conserved interactions including a salt bridge, and DNA binding
through the NAC dimer face rich in positive charges.

METHODS
Crystallization and structure determination. The NAC domain of
ANAC was recombinantly produced in Escherichia coli and

Table 1 | Analysis of the dimer interface by the Protein–Protein
Interaction Server (http://www.biochem.ucl.ac.uk/bsm/PP/server)

Interface parameter Value

Accessible surface area, interface A–B (accessible
surface area from A buried in the dimer)

811.4 Å2

Accessible surface area, interface B–A (accessible
surface area from B buried in the dimer)

735.2 Å2

% of monomer accessible surface area, interface A–B 8.0

% of monomer accessible surface area, interface B–A 7.5

% polar atoms in interface A–B 30.4

% polar atoms in interface B–A 24.2

% nonpolar atoms in interface A–B 69.6

% nonpolar atoms in interface B–A 75.8

Hydrogen bonds 12

Salt bridges 2

Disulphide bonds 0

Bridging water molecules 2

1 2 3 4 5 6 7

Fig 4 | Interactions of recombinant ANAC(1–168) with the �90 to þ 9

fragment of the CaMV 35S promoter. Lane 1, no ANAC(1–168); lane 2,

10 ng ANAC(1–168); lane 3, 50 ng ANAC(1–168); lane 4, 100 ng ANAC(1–

168); lanes 5–7, same as lanes 2–4 but containing 250-fold of unlabelled

�90 to þ 9 CaMV 35S fragment.

Table 2 | Data collection statistics

Native KAu(CN)2 TMLA EMTS K2PtCl4

Resolution range (Å) 30–2.50 (2.64–2.50) 30–1.90 (2.00–1.90) 30–3.00 (3.16–3.00) 30–3.00 (3.16–3.00) 30–3.50 (3.69–3.50)

Completeness (%) 95.6 (89.8) 97.9 (95.1) 99.9 (99.9) 99.9 (99.9) 99.3 (99.3)

/I/s(I)S 5.6 (2.5) 6.1 (2.3) 8.7 (4.7) 6.8 (2.4) 5.1 (2.4)

Rmerge
a 0.094 (0.300) 0.061 (0.307) 0.072 (0.154) 0.097 (0.296) 0.121 (0.266)

Number of sitesb – 2 2 3 2

EMTS, ethyl mercurithiosalicylate; TMLA, trimethyl lead acetate. Numbers in parentheses refer to the highest resolution shell.
aRmerge¼

P
hkl

P
i|I(hkl)i�/I(hkl)S|/

P
hkl

P
i I(hkl)i, where I(hkl)i is the ith measurement and /I(hkl)S is the average intensity of symmetry-equivalent reflections.

bNumber of heavy atom sites identified with SOLVE and used for phasing.
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crystallized as described in Olsen et al (2004). Native and
derivative data of form III crystals (as described in Olsen et al,
2004) were collected at 100 K at beamlines I711 at MAXLAB,
Lund, Sweden (l¼ 1.0350 Å) and ID29, ESRF, Grenoble, France
(l¼ 0.9999 Å). Form III crystals belong to space group P212121

with cell parameters a¼ 62.4 Å, b¼ 75.3 Å and c¼ 80.5 Å in the
dicyanoaurate derivative, from which the highest resolution data
were obtained. Extensive data collection statistics have been
shown previously (Olsen et al, 2004), and a short summary of the
collected data is given in Table 2. The structure was solved by
MIRAS after the identification of heavy atom sites in SOLVE
(version 2.03; Terwilliger & Berendzen, 1999). Phasing in SOLVE
with the number of sites specified in Table 2 gave a score of 14.8
and a figure of merit of 0.55. Further density modification and auto-
tracing were carried out in RESOLVE (version 2.03; Terwilliger,
2000). The NCS symmetry was not identified automatically by
RESOLVE, due to asymmetry in the binding of heavy atoms to the
NCS-related monomers. The NCS matrix could, however, be
identified manually using the information contained in the native
Patterson map and the initial autotraced model. This matrix was
used in subsequent density modification runs. To exploit the
higher resolution of the dicyanoaurate derivative, density modi-
fication was carried out using amplitudes from this data set to the
full resolution limit (1.9 Å). Approximately half of the backbone
structure was autotraced by RESOLVE and then built manually in
O (version 7.0.1; Jones et al, 1991) and by further autotracing with
ARP/wARP (version 6.0; Perrakis et al, 1999). Crystallographic
refinement was carried out in REFMAC5 (version 5.1.24;
Murshudov et al, 1997). The final model includes 297 residues
where regions A5–A8, A79–A85, B78–B85, 144–151 (A and B)
and 164–168 (A and B) could not be traced. The final
dicyanoaurate derivative model contains four heavy atom sites
of which two had been identified by SOLVE. The four sites include
two near Cys 33 in A, one near Cys 33 in B and one near region
Phe 41–Ile 46 in A. Due to the low occupancies (0.13, 0.07, 0.10
and 0.21, respectively), only the gold atom of dicyanoaurate has
been modelled. Refinement statistics are summarized in Table 3.
Towards the end of the refinement, the coordinates were used to
refine the structure against the native data set. To ascertain
whether dimer asymmetry was also present in the native structure,
a simulated annealing omit map was calculated in CNS (version
1.1; Brünger et al, 1998). A round of simulated annealing
refinement in CNS was carried out before further refinement in
REFMAC5. The native model consists of 296 residues, and the
final refinement statistics are also shown in Table 3.
Gel mobility shift assay. A 100 bp fragment (�90 to þ 9) of the
CaMV 35S promoter was amplified by PCR from pCAMBIA3300
using the following primers: 50-TTTCAGCGTGTCCTCTCCA-30

and 50-ATCTCCACTGACGTAAGGG-30. The promoter fragment
was 30 end labelled with digoxigenin (DIG) using a DIG Gel Shift
Kit (Roche). DNA binding reactions contained 4 ml 5� binding
buffer (100 mM Hepes, pH 7.6, 5 mM EDTA, 50 mM (NH4)2SO4,
5 mM DTT, 1% (w/v) Tween-20, 150 mM KCl), 1 mg poly[d(I-C)],
0.8 ng DIG-labelled DNA and the specified amounts of recombi-
nant ANAC NAC domain in a final volume of 20 ml. In
competition experiments, 0.1 mg of unlabelled promoter fragment
was added. The binding reactions were incubated for 15 min at
room temperature and resolved on a 10% polyacrylamide gel in
TBE buffer (PAGEr Gold Precast Gels, Cambrex). Following

electrophoresis, electroblotting was performed using a Hybond-N
nylon membrane (Amersham Pharmacia Biotech), and chemilu-
minescent detection was carried out according to the instructions
of the manufacturer of the DIG Gel Shift Kit (Roche).
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